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We propose a general methodology based on robust optimization to address the problem of optimally controlling a supply
chain subject to stochastic demand in discrete time. This problem has been studied in the past using dynamic programming,
which suffers from dimensionality problems and assumes full knowledge of the demand distribution. The proposed approach
takes into account the uncertainty of the demand in the supply chain without assuming a specific distribution, while
remaining highly tractable and providing insight into the corresponding optimal policy. It also allows adjustment of the
level of robustness of the solution to trade off performance and protection against uncertainty. An attractive feature of
the proposed approach is its numerical tractability, especially when compared to multidimensional dynamic programming
problems in complex supply chains, as the robust problem is of the same difficulty as the nominal problem, that is, a
linear programming problem when there are no fixed costs, and a mixed-integer programming problem when fixed costs
are present. Furthermore, we show that the optimal policy obtained in the robust approach is identical to the optimal policy
obtained in the nominal case for a modified and explicitly computable demand sequence. In this way, we show that the
structure of the optimal robust policy is of the same base-stock character as the optimal stochastic policy for a wide range
of inventory problems in single installations, series systems, and general supply chains. Preliminary computational results
are very promising.
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1. Introduction
Optimal supply chain management has been extensively
studied in the past with much theoretical success. Dynamic
programming has long emerged as the standard tool for
this purpose, and has led to significant breakthroughs as
early as 1960, when Clark and Scarf (1960) proved the
optimality of base-stock policies for series systems in their
landmark paper. Although dynamic programming is a pow-
erful technique as to the theoretical characterization of
the optimal policy for simple systems, the complexity of
the underlying recursive equations over a growing num-
ber of state variables makes it ill suited for the com-
putation of the actual policy parameters, which is cru-
cial for real-life applications. Approximation algorithms
have been developed to address those issues. These include
stochastic approximation (see Koshner and Clark 1978)
and infinitesimal perturbation analysis (IPA) (see Glasser-
man 1991, Ho and Cao 1991), where a class of policies,
e.g., base-stock, characterized by a set of parameters, is
optimized using simulation-based methods (see Fu 1994,
Glasserman and Tayur 1995, Kapuscinski and Tayur 1999).
IPA-based methods assume knowledge of the underlying
probability distributions and restrict their attention to cer-

tain classes of policies that might be suboptimal for a gen-
eral network problem. Another technique that has gained
popularity in recent years is approximate dynamic program-
ming, described by Bertsekas and Tsitsiklis (1996). Despite
their promising potential, these methods remain hard to
implement in practice. As a result, for implementation pur-
poses, preference is given to more intuitive policies that are
much easier to compute, but also suboptimal.
Zipkin (2000) describes policies widely used in prac-

tice, such as the economic-order-quantity model, where the
demand is constant over time, and the dynamic-economic-
lotsize model, which incorporates time-varying demands,
for single installations. In both cases, the demand is consid-
ered to be without any uncertainty. Myopic policies, which
minimize the cost solely at the current time period, are also
often used as a substitute for the optimal policy obtained
by dynamic programming. For supply chains more com-
plex than series systems, what is commonly referred to as
“the curse of dimensionality” plagues even the theoreti-
cal use of dynamic programming to find the structure of
the optimal policy, thus making it necessary to resort to
approximations.
Dynamic programming also assumes full knowledge of

the underlying distributions, which further limits its prac-

150



Bertsimas and Thiele: A Robust Optimization Approach to Inventory Theory
Operations Research 54(1), pp. 150–168, © 2006 INFORMS 151

tical usefulness. The first attempt to address the issue of
imperfect information in inventory control is due to Scarf
(1958), who studied the optimal policy for the most adverse
distribution in a one-period, one-stage inventory model
where only the mean and the variance of the demand are
known. Moon and Gallego later extended this approach to
single-period newsboy problems (1993) and to one-stage
inventory models with a fixed reorder quantity and under
periodic review (1994). Similar ideas were applied to finite-
horizon inventory models by Gallego et al. (2001), under
the assumption that demand is a discrete random variable
taking values in a known countable set. However, their
approach relies on dynamic programming and, as a result,
suffers from similar practical limitations.
Hence, the need arises to develop a new optimization

approach that incorporates the stochastic character of the
demand in the supply chain without making any assump-
tions on its distribution, is applicable to a wide range
of network topologies, is easy to understand intuitively,
and combines computational tractability with the structural
properties of the optimal policy. The goal of this paper is
to present such an approach, based on robust linear and
mixed-integer optimization.
Robust optimization addresses the problem of data uncer-

tainty by guaranteeing the feasibility and optimality of the
solution for the worst instances of the parameters. However,
because it is intrinsically a worst-case approach, feasibil-
ity often comes at the cost of performance and generally
leads to overconservative solutions. For instance, Soyster
(1973) proposes a model to handle columnwise uncertainty
in linear programming problems, where every uncertain
parameter has to be taken equal to its worst-case value in
the set. Subsequent research efforts, led by Ben-Tal and
Nemirovski (1998, 1999, 2000), El Ghaoui et al. (1998),
and El Ghaoui and Lebret (1997) to address overconser-
vativeness, have applied robust optimization to linear pro-
gramming problems with ellipsoidal uncertainty sets, thus
obtaining conic quadratic programs. Bertsimas and Sim
(2004) present a technique specifically tailored for poly-
hedral uncertainty that leads to linear robust counterparts
while controlling the level of conservativeness of the solu-
tion. Moreover, their method readily extends to discrete
optimization problems (Bertsimas and Sim 2003). This
is the technique we will use here to develop a tractable
approach to optimal supply chain control in the presence
of demand uncertainty.
Specifically, the contributions of this paper are as

follows:
1. We develop an approach that incorporates demand

randomness in a deterministic manner, remains numerically
tractable as the dimension of the problem increases, and
leads to high-quality solutions without assuming a specific
demand distribution. In particular, preliminary computa-
tional results are quite promising.
2. The robust problem is of the same class as the nomi-

nal problem, that is, a linear programming problem if there

are no fixed costs or a mixed-integer programming problem
if fixed costs are present—independently of the topology of
the network. Moreover, the optimal robust policy is iden-
tical to the optimal nominal policy for a modified demand
sequence.
3. The optimal robust policy is qualitatively similar to

the optimal policy obtained by dynamic programming when
known. In particular, it remains base stock when the opti-
mal stochastic policy is base stock, as well as in some other
cases where the optimal stochastic policy is not known.
4. We derive closed-form expressions of key parameters

defining the optimal policy. These expressions provide a
deeper insight into the way uncertainty affects the optimal
policy in supply chain problems.

Structure of the Paper

In §2, we present the general framework of robust linear
optimization. In §3, we apply this technique to the inven-
tory problem at a single station, and extend it to the net-
work case in §4. We implement the method in §5. Finally,
§6 contains some concluding remarks.

2. The Robust Optimization Approach

2.1. Uncertainty Structure

We rely extensively on the robust optimization tools devel-
oped by Bertsimas and Sim (2004) for linear programming
problems. We consider the following problem subject to
data uncertainty:

minimize c′x

subject to Ax� b�

l� x� u�

We assume without any loss of generality that the data
uncertainty only affects the elements in matrix A. Indeed,
if there is uncertainty on b or c, we can rewrite the linear
programming problem as

minimize c̃′�x
subject to Ã�x� 0�

l̃� �x� �u�

with �x = �z�x� y�′, c̃ = �1�0�0�′, l̃ = �−M� l�1�′, and
�u= �M�u�1�′, where M is a large constant, and finally,

Ã=
(
1 −c′ 0

0 −A b

)
�

We model data uncertainty in A as follows. Each uncer-
tain coefficient aij is known to belong to an interval cen-
tered at its nominal value āij and of half-length âij , but
its exact value is unknown. As much as it is unlikely



Bertsimas and Thiele: A Robust Optimization Approach to Inventory Theory
152 Operations Research 54(1), pp. 150–168, © 2006 INFORMS

that all coefficients are equal to their nominal value, it is
also unlikely that they are all equal to their worst-case
value. For this reason, the “safest” approach, where all
parameters are taken equal to their worst bound, leads
to a severe deterioration of the cost without necessarily
being justified in practice. Hence, we wish to adjust the
level of conservativeness of the solution, so that a rea-
sonable trade-off between robustness and performance is
achieved. We now quantify the concept above in mathemat-
ical terms.
We define the scaled deviation of parameter aij from its

nominal value as zij = �aij − āij �/âij . The scaled deviation
takes values in �−1�1. Moreover, we impose a budget of
uncertainty in the following sense: The total (scaled) varia-
tion of the parameters cannot exceed some threshold � , not
necessarily integer:∑
�i� j�∈J

�zij �� ��

where J is the set of indices of the uncertain parameters.
By taking � = 0 (respectively, � = �J �), we obtain the nom-
inal (respectively, worst) case. Bertsimas and Sim (2004)
show that having the threshold � vary in �0� �J �� allows
greater flexibility to build a robust model without exces-
sively affecting the optimal cost. Intuitively, the budget of
uncertainty rules out large deviations in

∑
j aijxj , which

play a predominant role in worst-case analysis, but actually
occur with low probability, because large deviations in aij
tend to cancel each other out as the number of parameters
increases.

2.2. The Robust Approach

Let

�=
{
A ∈�m×n � aij ∈ �āij − âij � āij + âij  ∀ i� j�

∑
�i� j�∈J

�aij − āij �
âij

� �

}
�

The robust problem is then formulated as

minimize c′x

subject to Ax� b ∀A ∈��

l� x� u�

(1)

Theorem 2.1 (Bertsimas and Sim 2003a). The uncertain
linear programming problem has the following robust, lin-
ear counterpart:

minimize c′x

subject to
∑
j

āijxj + qi� +
∑

j��i� j�∈J
rij � bi ∀ i�

qi+ rij � âijyj ∀ �i� j� ∈ J �
−y� x� y� l� x� u�

q� 0� r� 0� y� 0�

(2)

Proof. The proof is based on strong duality. We outline
it here because we utilize similar ideas in other parts of
the paper. The ith constraint is maxA∈�

∑
j aijxj � bi. As

a result, we have to solve the following auxiliary problem
associated with row i:

maximize
∑
j

�āij + zij âij �xj

subject to
∑
�l� j�∈J

�zlj �� ��

0� �zlj �� 1 ∀ �l� j� ∈ J �

(3)

At optimality, only zlj with l = i will be nonzero. This
maximization problem can then be reformulated as a min-
imization problem using strong duality because the feasi-
ble set is nonempty (z = 0 is solution) and bounded. Its
dual is

minimize qi� +
∑

j��i� j�∈J
rij

subject to qi+ rij � âij �xj � ∀ j� �i� j� ∈ J �
qi � 0� rij � 0 ∀ j� �i� j� ∈ J �

(4)

Reinjecting into the original problem, Bertsimas and Sim
obtain the robust counterpart. �

The robust counterpart is therefore of the same class as
the nominal problem, that is, a linear programming prob-
lem. This is a highly attractive feature of this approach
because linear programming problems are readily solved
by standard optimization packages. Moreover, if in the
original problem (1), some of the variables were con-
strained to be integers, then the robust counterpart (2)
would retain the same properties, i.e., the robust counterpart
of a mixed-integer programming problem is itself another
mixed-integer programming problem.

3. The Single-Station Case

3.1. The Uncapacitated Model

In this section, we apply the robust optimization framework
to the problem of ordering, at a single installation, a sin-
gle type of item subject to stochastic demand over a finite
discrete horizon of T periods, so as to minimize a given
cost function. We closely follow Bertsekas (1995) in our
setting. We define, for k= 0� � � � � T ,
xk� stock available at the beginning of the kth period,
uk� stock ordered at the beginning of the kth period,
wk� demand during the kth period.
The stock ordered at the beginning of the kth period

is delivered before the beginning of the �k + 1�st period,
that is, all orders have a constant lead time equal to 0.
Excess demand is backlogged. Therefore, the evolution of
the stock over time is described by the following linear



Bertsimas and Thiele: A Robust Optimization Approach to Inventory Theory
Operations Research 54(1), pp. 150–168, © 2006 INFORMS 153

equation:

xk+1 = xk+ uk−wk� k= 0� � � � � T − 1� (5)

leading to the closed-form expression

xk+1 = x0+
k∑
i=0
�ui−wi�� k= 0� � � � � T − 1� (6)

Neither the stock available nor the quantity ordered at
each period is subject to upper bounds. Section 3.2 deals
with the capacitated case.
The demands wk are random variables. To apply the

approach outlined in §2, we model wk for each k as
an uncertain parameter that takes values in �wk − �wk�
wk + �wk. We define the scaled deviation of wk from its
nominal value to be zk = �wk − wk�/�wk, which takes val-
ues in �−1�1. We impose budgets of uncertainty at each
time period k for the scaled deviations up to time k. Hence,
we now have the constraint

∑k
i=0 �zi�� �k for all time peri-

ods k= 0� � � � � T − 1. These budgets of uncertainty rule out
large deviations in the cumulative demand, and as a result
the robust methodology can be understood as a “reasonable
worst-case” approach. The main assumption we make on �k
is that they are increasing in k, i.e., we feel that uncertainty
increases with the number of time periods considered. We
also constrain �k to be increasing by at most 1 at each
time period, i.e., the increase of the budgets of uncertainty
should not exceed the number of new parameters added at
each time period.
Finally, we specify the cost function. The cost incurred

at period k consists of two parts: a purchasing cost, C�uk�,
and a holding/shortage cost resulting from this order,
R�xk + uk − wk�, which is computed at the end of the
period, after the shipment uk has been received and the
demand wk has been realized. Here, we consider a purchas-
ing cost of the form

C�u�=

K+ c · u if u> 0�

0 if u= 0�
(7)

with c > 0 the unit variable cost and K � 0 the fixed cost.
If K > 0, a fixed positive cost is incurred whenever an order
is made. The holding/shortage cost represents the cost asso-
ciated with having either excess inventory (positive stock)
or unfilled demand (negative stock). We consider a convex,
piecewise linear holding/shortage cost

R�x�=max�hx�−px�� (8)

where h and p are nonnegative. We assume that p > c,
so that ordering stock remains a possibility up to the last
period.
Using the piecewise linearity and convexity of the hold-

ing/shortage cost function, and modelling the fixed order-
ing cost with binary variables, the inventory problem we

consider can be written as a mixed-integer programming
problem:

minimize
T−1∑
k=0
�cuk+Kvk+ yk� (9)

subject to

yk � h

(
x0+

k∑
i=0
�ui−wi�

)
� k= 0� � � � � T − 1� (10)

yk �−p
(
x0+

k∑
i=0
�ui−wi�

)
� k= 0� � � � � T − 1� (11)

0� uk �Mvk� vk ∈ $0�1%� k= 0� � � � � T − 1� (12)

where wi = wi + �wi · zi such that z ∈� = $�zi�� 1 ∀ i� 0�∑k
i=0 �zi�� �k ∀k� 0%.
Data uncertainty now only affects the first two con-

straints of the mixed-integer programming problem. We
isolate the effect of the uncertainty on the stock level
by writing xk+1 under the form xk+1 = �xk+1 +

∑k
i=0 �wizi,

where �xk+1 is the inventory we would have by ordering the
same quantities if there was no uncertainty on the demand,
that is, �xk+1 = x0 +

∑k
i=0�ui − wi� for all k. Following the

technique developed in §2, the robust approach consists
here of maximizing the right-hand side of the constraints
over the set of admissible scaled deviations. For the kth pair
of holding/shortage constraints, this amounts to solving the
auxiliary linear programming problem:

maximize
k∑
i=0

�wizi

subject to
k∑
i=0
zi � �k�

0� zi � 1 ∀ i�

(13)

Remarks. 1. This auxiliary problem arises from minimiz-
ing

∑k
i=0 �wizi in the holding constraint (10) and maximizing∑k

i=0 �wizi in the shortage constraint (11) over �, which is
symmetric in zi. As a result, the optimal zi in �−1�1,
i= 0� � � � � k, obtained in both cases are the opposite of each
other and there is no feasible demand in the uncertain set
that realizes both constraints of each pair.
2. This also illustrates why we allot thresholds to

∑k
i=0 zi

for all time periods k = 0� � � � � T − 1. If we only had a
global threshold on

∑T−1
i=0 zi, we would maximize

∑k
i=0 �wizi

over 0� zi � 1 for all i and
∑T−1
i=0 zi � � . As a result, for

all k such that k� ���, we would have at optimality zi = 1
for i � k, which is equivalent to taking all the wi in the
early time periods equal to their worst-case value. The early
time periods would then be overprotected.
3. The robust methodology does not depend on �xk,

k� 0. Therefore, it can readily be extended to arbitrary
constant lead times L, with �xk+1 = x0+

∑k−L
i=0 ui −

∑k
i=0 wi

for all k.
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Because the linear programming problem (13) is feasi-
ble and bounded, by strong duality the optimal cost of this
problem is equal to the optimal cost of its dual. Reinject-
ing the dual of the auxiliary problem in Equations (10)
and (11), we obtain the following robust formulation for
the single-station inventory problem:

minimize
T−1∑
k=0
�cuk+Kvk+ yk�

subject to

yk�h

(
x0+

k∑
i=0
�ui− wi�+qk�k+

k∑
i=0
rik

)
∀k�

yk�p

(
−x0−

k∑
i=0
�ui− wi�+qk�k+

k∑
i=0
rik

)
∀k�

qk+ rik � �wi ∀k� ∀ i� k�
qk � 0� rik � 0 ∀k� ∀ i� k�
0� uk �Mvk� vk ∈ $0�1% ∀k�

(14)

where M is a large positive number.
The variables qk and rik quantify the sensitivity of the

cost to infinitesimal changes in the key parameters of
the robust approach, namely, the level of conservativeness
and the bounds of the uncertain variables. At each time
period k, qk�k +

∑k
i=0 rik represents the worst-case devi-

ation of the cumulative demand from its nominal value,
subject to the budgets of uncertainty.
The robust problem is a linear programming problem if

there is no fixed cost �K = 0� and a mixed-integer program-
ming problem if fixed costs are present �K > 0�. In both
cases, this robust model can be readily solved numerically
through standard optimization tools, which is of course
very appealing. It is also desirable to have some theoreti-
cal understanding of the optimal policy, in particular with
respect to the optimal nominal policy and, if known, the
optimal stochastic policy. We address these questions next.

Definition 3.1 (�S�S� and �s� S� Policies). The optimal
policy of a discrete-horizon inventory problem is said to be
�s� S�, or base stock, if there exists a threshold sequence
�sk� Sk� such that, at each time period k, it is optimal to
order Sk − xk if xk < sk and 0 otherwise, with sk � Sk. If
there is no fixed ordering cost (K = 0), sk = Sk.
To analyze the optimal robust policy, we need the fol-

lowing lemma.

Lemma 3.1 (Optimal Nominal and Stochastic Policy).
(a) The optimal policy in the stochastic case, where the cost
to minimize is the expected value of the cost function over
the random variables wk is �s� S�. As a result, the optimal
policy for the nominal problem is also �s� S�.
(b) For the nominal problem without fixed cost, the opti-

mal policy is �S�S� with the threshold at time k being
Sk = wk.

(c) For the nominal problem with fixed cost, if we denote
by tj (j = 1� � � � � J ) the times where stock is ordered (which
are obtained by solving (9) subject to (10)–(12)) and sj , Sj
the corresponding thresholds at time tj , we have

Sj =
Ij∑
i=0

wtj+i (15)

and

s1 = x0−
t1−1∑
i=0

wi� sj =−
Lj−1−1∑
i=Ij−1+1

wtj−1+i� j � 2� (16)

where

Lj = tj+1− tj and Ij =
⌊
pLj − c1$j=J %

h+p
⌋
�

Proof. (a) See Bertsekas (1995) for the optimality of base-
stock policies in the stochastic case. The nominal problem
is a special case where the random variables are equal to
their nominal value with probability 1.
(b) For the nominal case without fixed cost, the policy u

defined by

uk =
{wk− xk if xk < wk�
0 otherwise,

is feasible and incurs the cost COST = c�∑T−1
i=0 wi − x0�+

h
∑I
k=0�x0−

∑k
i=0 wi�, where I is the largest integer k such

that x0−
∑k
i=0 wi � 0. We assume that I < T −1, otherwise

the problem is trivial. We consider the dual of this linear
programming problem:

maximize
T−1∑
k=0

(
x0−

k∑
i=0

wi
)
�h,k+1−p-k+1�

subject to −h
T∑
j=k
,j +p

T∑
j=k
-j � c� k= 1� � � � � T �

,k+-k = 1� ,k � 0� -k � 0� k= 1� � � � � T �
The following solution is dual feasible with cost equal

to COST , proving (b) by strong duality:

,k =



1 if x0−

k−1∑
i=0

wi � 0�
p− c 1$k=T %
h+p otherwise�

-k = 1−,k�

(c) In the case with fixed cost, we consider the opti-
mal ordering times as given (that is, v∗ is given). The
problem becomes a linear programming problem. Let tj ,
j = 1� � � � � J , be the times when an amount of stock
uj is ordered. The cost function can be decomposed in
J + 1 pieces, the jth piece (j = 0� � � � � J ) representing
the cost incurred from time tj up to tj+1 (not included),
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with the conventions t0 = −1 and tJ+1 = T . The min-
imization problem is solved recursively backwards for
j = 1� � � � � J , for the cumulative cost from step j onward.
Let Ij be the greatest integer i in �1�Lj such that xtj+i > 0,
where Lj = tj+1− tj . (If xtj+i � 0 for all i ∈ �1�Lj, we
take Ij = 0.) The cost function for the J th piece can be
rewritten as

cuJ +h
IJ−1∑
k=0

(
xtJ + uJ −

k∑
i=0

wtJ+i
)

+p
LJ−1∑
k=IJ

(
−xtJ − uJ +

k∑
i=0

wtJ+i
)
�

and is therefore linear in uJ with slope �h + p�IJ +
c − pLJ , with uJ subject to the constraint

∑IJ−1
i=0 wtJ+i <

xtJ + uJ �
∑IJ
i=0 wtJ+i from the definition of IJ . This func-

tion is minimized for

I∗J =
⌊
pLJ − c
h+p

⌋
� xtJ + u∗J =

I∗J∑
i=0

wtJ+i� (17)

Moreover, we have xtJ+LJ = xtJ+1 = xtJ + u∗J −∑LJ−1
i=0 wtJ+i =−∑LJ−1

i=I∗J +1 wtJ+i. At optimality, the cost func-
tion at the last time period is equal to c�

∑I∗J
i=0 wtJ+i−xtJ �+

h
∑IJ−1
k=0 �

∑I∗J
i=k+1 wt

J
+i�+p

∑LJ−1
k=IJ+1�

∑k
i=I∗J +1 wtJ +i�.

After step j + 1, we see that at optimality the cumula-
tive cost at step j + 1 affects the cumulative cost at step j
only through −c xtj+1 , which depends on Ij and the data
of the problem. The cumulative cost function at step j is
minimized for

I∗j =
⌊
pLj

h+p
⌋
� xtj + u∗j =

I∗j∑
i=0

wtj+i� (18)

Moreover, we have xtj+Lj = xtj+1 = xtj +u∗j −
∑Lj−1
i=0 wtj+i =

−∑Lj−1
i=I∗j +1 wtj+i. Using the definition of s and S in an �s� S�

policy, it follows immediately that

sj =−
Lj−1−1∑
i=I∗j−1+1

wtj−1+i ∀ j � 2� Sj =
I∗j∑
i=0

wtj+i ∀ j � 1�
(19)

with

I∗j =
⌊
pLj − c1$j=J %

h+p
⌋
�

s1 is equal to xt1 and is obtained by the dynamics
equation. �

We next present the main result regarding the structure
of the optimal robust policy.

Theorem 3.2 (Optimal Robust Policy). (a) The optimal
policy in the robust formulation (14), evaluated at time 0
for the rest of the horizon, is the optimal policy for the
nominal problem with the modified demand

w′
k = wk+

p−h
p+h�Ak−Ak−1�� (20)

where Ak = q∗k�k +
∑k
i=0 r

∗
ik is the deviation of the cumu-

lative demand from its mean at time k, q∗ and r∗ being
the optimal q and r variables in (14). (By convention,
q−1 = r·�−1 = 0.) In particular, it is �S�S� if there is no
fixed cost and �s� S� if there is a fixed cost.
(b) If there is no fixed cost, the optimal robust policy is

�S�S� with Sk =w′
k for all k.

(c) If there is a fixed cost, the corresponding thresholds
Sj , sj , where j = 1� � � � � J , indexes the ordering times, are
given by Equations (15) and (16) applied to the modified
demand w′

k.
(d) The optimal cost of the robust problem (14) is equal

to the optimal cost for the nominal problem with the
modified demand plus a term representing the extra cost
incurred by the robust policy, �2ph�/�p+h�∑T−1

k=0 Ak.

Proof. Let �u∗�v∗�q∗� r∗� be the optimal solution of (14).
Obviously, setting the q and r variables to their optimal
values q∗ and r∗ in (14) and resolving the linear program-
ming problem will give u∗ and v∗ again. This enables us to
focus on the optimal ordering policy only, taking the auxil-
iary variables q∗, r∗ as given in the robust formulation (14).
We then have to solve

min
u�0

T−1∑
k=0
�cuk+K1$uk>0%+max�h��xk+1+Ak��

p�−�xk+1+Ak��� (21)

where �xk+1 = x0+
∑k
i=0�ui − wi� and Ak = q∗k�k +

∑k
i=0 r

∗
ik

for all k.
We define a modified stock variable x′k, which evolves

according to the linear equation

x′k+1 = x′k+ uk−
(
wk+

p−h
p+h�Ak−Ak−1�

)
︸ ︷︷ ︸

=w′
k

� (22)

with x′0 = x0. Note that the modified demand w′
k is not

subject to uncertainty. We have

max�h��xk+1+Ak��p�−�xk+1+Ak��
=max�hx′k+1�−px′k+1�+

2ph
p+hAk� (23)

The reformulation of the robust model, given the optimal
q∗ and r∗ variables, as a nominal inventory problem in
the modified stock variable x′k (plus the fixed cost �2ph/
�p+h��∑T−1

k=0 Ak) follows from injecting Equation (23) into
formulation (21). This proves (a) and (d). We conclude that
(b) and (c) hold by invoking Lemma 3.1. �
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Remarks. 1. Using Problem (13) to define Ak by strong
duality, and because �k−1 � �k for all k, we have Ak−1 �Ak
for all k. Therefore, w′

k will be greater than wk if p > h
(that is, if shortage costs are more expensive than holding
costs, we increase the “safety stock”), smaller than wk if
p < h (if holding costs are more expensive, we want to
make sure that we will not be left with extra items), and
equal to wk if p= h.
2. Using an argument similar to the one above, and

because �k � �k−1 + 1 for all k, we have Ak � Ak−1 + �wk
for all k. Therefore, at time k, w′

k belongs to[
wk� wk+

p−h
p+h �wk

]
if p� h and

[
wk+

p−h
p+h �wk� wk

]
if p < h�

The extreme case is p= h, where w′
k = wk for all k and �k.

3. For the case without fixed cost, and for the case with
fixed cost when the optimal ordering times are given, the
robust approach leads to the thresholds in closed form. For
instance, if the demand is i.i.d. (wk = w, �wk = �w for all k),
we have Ak = �w�k and, if there is no fixed cost,

Sk =w′
k = w+ p−h

p+h �w��k− �k−1� for all k�

Hence, the robust approach protects against the uncer-
tainty of the demand while maintaining striking similar-
ities with the nominal problem, remains computationally
tractable, and is easy to understand intuitively.

3.2. The Capacitated Model

So far, we have assumed that there was no upper bound
either on the amount of stock that can be ordered or on
the amount of stock that can be held in the facility. In this
section, we consider the more realistic case where such
bounds exist. The other assumptions remain the same as
in §3.1.

3.2.1. The Model with Capacitated Orders. The ex-
tension of the robust model to capacitated orders of maxi-
mal size d is immediate, by adding the constraint

uk � d ∀k (24)

to formulation (14).

Theorem 3.3 (Optimal Robust Policy). The optimal
robust policy is the optimal policy for the nominal problem
with capacity d on the links and with the modified demand
defined in Equation (20).

Proof. The reformulation of the robust model as a prob-
lem without uncertainty does not affect constraints on the
orders uk. Adding the constraints uk � d to this new prob-
lem, we obtain a deterministic model with capacity d on the
links. �

3.2.2. The Model with Capacitated Inventory. We
now consider the case where stock can only be stored up
to an amount C. This adds the following constraint to
formulation (14):

x0+
k∑
i=0
�ui−wi��C� (25)

where wi = wi+ �wi ·zi such that z ∈ $�zi�� 1 ∀ i�
∑k
i=0 �zi��

�k ∀k%. This constraint depends on the uncertain parame-
ters wi. Applying the technique developed in §2 and using
the same auxiliary problem (13) as before, we rewrite this
constraint in the robust framework as

�xk+1+ qk�k+
k∑
i=0
rik �C ∀k� (26)

where qk and rik are defined in (14).
We now analyze the optimal robust policy. We define

the modified stock variables x′k by x
′
k+1 = x′k+uk−w′

k and
x′0 = x0, with w′

k given by Equation (20) for all k. The
inventory capacity constraint (26) becomes

x′k+1 �C − 2p
p+hAk ∀k� (27)

This deterministic problem in x′k is not equivalent to a
nominal problem with inventory capacity because the right-
hand side in the new capacity constraint depends on the
time period k, and worse, decreases with k. However, it
never threatens the feasibility of the problem, in the fol-
lowing sense:

Lemma 3.4. For all k, if x′k � Ck, then x
′
k − w′

k � Ck+1,
where Ck =C − �2p/�p+h��Ak−1.
Therefore, if x′k is feasible, it is always possible to satisfy

the inventory capacity at time k+ 1 by not ordering.

Proof. We need to show that

x′k �C − 2p
p+hAk−1 implies

x′k �C − 2p
p+hAk+w

′
k for all k�

Because

w′
k = wk+

p−h
p+h�Ak−Ak−1��

it suffices to prove that Ak − Ak−1 � wk. However, Ak −
Ak−1 � �wk from problem (13) and �k − �k−1 � 1, and
�wk � wk because the demand is always nonnegative. �

We then have the following theorem.

Theorem 3.5 (Optimal Robust Policy). The optimal
robust policy is the optimal policy for the nominal prob-
lem subject to the modified demand defined in Equa-
tion (20), with inventory capacity at time 0 equal to C,
and with inventory capacity at time k+ 1, k� 0, equal to
C − �2p/�p+h��Ak.
Proof. Follows from incorporating Equation (27) to
formulation (14). �
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4. The Network Case

4.1. The Uncapacitated Model

We now extend the results of §3 to the network case.
We first study the case of tree networks, which are well
suited to describe supply chains because of their hierarchi-
cal structure: The main storage hubs (the sources of the
network) receive their supplies from outside manufacturing
plants and send items throughout the network, each time
bringing them closer to their final destination, until they
reach the stores (the sinks of the network). Let S be the
number of sink nodes. When there is only one source and
one sink, the tree network is called a series system.
We define echelon k for k = 1� � � � �N , with N the total

number of nodes in the network, to be the union of all
the installations, including k itself, that can receive stock
from installation k, and the links between them. This is
the definition used by Clark and Scarf (1960), as well as
Zipkin (2000), when they consider tree networks. In the
special case of series systems, we number the installations
such that for k = 1� � � � �N , the items transit from instal-
lation k+ 1 to k, with installation N receiving its supply
from the plant and installation 1 being the only sink node,
as in Clark and Scarf (1960). In that case, the demand at
installation k+ 1 at time t is the amount of stock ordered
at installation k at the same time t.
We also define, for k= 1� � � � �N ,
Ik�t�� stock available at the beginning of period t at

installation k,
Xk�t�� stock available at the beginning of period t at

echelon k,
Dikk�t�� stock ordered at the beginning of period t at

echelon k to its supplier ik,
Ws�t�� demand at sink node s during period t,

s = 1� � � � � S.
Let N�k� be the set of installations supplied by instal-

lation k and O�k� the set of sink nodes in echelon k. We
assume constant lead times equal to 0, backlog of excess
demand, and linear dynamics for the stock at installation k
over time (k= 1� � � � �N ):
Ik�t+ 1�= Ik�t�+Dikk�t�−

∑
j∈N�k�

Dkj�t��

t = 0� � � � � T − 1� (28)

By convention, if k is a sink node s,
∑
j∈N�k� Dkj�t� =

Ws�t�. This leads to the following dynamics for the stock
at echelon k:

Xk�t+ 1�=Xk�t�+Dikk�t�−
∑
s∈O�k�

Ws�t��

t = 0� � � � � T − 1� (29)

Furthermore, the stock ordered by echelon k at time t is
subject to the coupling constraint∑
i∈N�k�

Dki�t��max�Ik�t��0� ∀k� ∀ t� (30)

that is, the total order made to a supplier cannot exceed
what the supplier currently has in stock, or, equivalently,
the supplier can only send through the network items that it
really has. Because the network was empty when it started
operating at time t0 =−�, it follows by induction on t that
Ik�t� � 0 for all k � 2. Therefore, the coupling constraint
between echelons is linear and can be rewritten as

∑
i∈N�k�

Dki�t�� �Xk�t�−
∑
i∈N�k�

�Xi�t� ∀k� ∀ t� (31)

with �Xi�t+1�=Xi�0�+
∑t
5=0$Dki�5�−

∑
s∈O�i� �Ws�5�% for

all i and t, where k supplies i, i.e., �Xi�t+1� is the level of
inventory at time t if the demand is deterministic, equal to
its nominal value. Neither the echelon inventories nor the
orders are capacitated. Section 4.2 deals with the capaci-
tated case.
Finally, we specify the cost function. We assume that

each echelon k has the same cost structure as the sin-
gle installation modelled in §3.1 with specific parame-
ters �ck�Kk�hk�pk�. We also keep the same notations and
assumptions here as in §3.1 regarding the uncertainty struc-
ture at each sink node. In particular, each sink node s has its
own threshold sequence �s�t� evolving over time that repre-
sents the total budget of uncertainty allowed up to time t for
sink s. We have Ws�t�= �Ws�t�+ �Ws�t� ·Zs�t� such that the
Zs�t� belong to the set �s = $�Zs�t��� 1 ∀ t�

∑t
5=0Zs�5��

�s�t� ∀ t%. We assume that 0� �s�t�− �s�t− 1�� 1 for all
s and t, that is, the budgets of uncertainty are increasing
in t at each sink node, but cannot increase by more than 1
at each time period.
Applying the robust approach developed in §2 to the

holding/shortage constraints in the same manner as in §3,
we obtain the mixed-integer programming problem

minimize
T−1∑
t=0

N∑
k=1

∑
i∈N�k�

$ckiDki�t�+KkiVki�t�+ Yi�t�%

subject to

Yi�t�� hi

{
�Xi�t+ 1�

+ ∑
s∈O�i�

(
qs�t��s�t�+

t∑
5=0
rs�5� t�

)}
∀ i� ∀ t�

Yi�t�� pi

{
− �Xi�t+ 1�

+ ∑
s∈O�i�

(
qs�t��s�t�+

t∑
5=0
rs�5� t�

)}
∀ i� ∀ t�

∑
i∈N�k�

Dki�t�� �Xk�t�−
∑
i∈N�k�

�Xi�t� ∀k� ∀ t�

qs�t�+ rs�5� t�� �Ws�5� ∀ s� ∀ t� ∀ 5 � t�
qs�t�� 0� rs�5� t�� 0 ∀ s� ∀ t� ∀ 5 � t�
0�Dki�t��MVki�t�� Vki�t� ∈ $0�1% ∀k� ∀ i ∈N�k�� ∀ t�

(32)
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As in the single-station case, an attractive feature of this
approach is that the robust model of a supply chain remains
of the same class as the nominal model, that is, a lin-
ear programming problem if there are no fixed costs, and
a mixed-integer programming problem if fixed costs are
present. Therefore, the proposed methodology is numeri-
cally tractable for very general topologies.
First, we study the optimal policy in the nominal case.

We have the following result.

Lemma 4.1 (Optimal Nominal Policy). (a) For the prob-
lem without uncertainty, the optimal policy for each eche-
lon k is the optimal policy obtained for a single installation
with time-varying capacity on the orders, subject to the
demand

∑
s∈O�k� �Ws�t� at time t.

(b) In the case without fixed costs, it is also the optimal
policy obtained for a single installation with new, time-
varying cost coefficients, without capacity, subject to the
demand

∑
s∈O�k� �Ws�t� at time t.

(c) In the case without fixed costs, the optimal policy at
each echelon is base stock for the new parameters of the
system.

Proof. Let us first analyze the series system case. The
coupling constraint for echelon k at time t is then
Dk�t�� Ik+1�t�. We analyze the optimal orders by setting
the right-hand sides of the coupling constraints to their opti-
mal values. The coupling constraint for echelon k at time t
becomes Dk�t� � Ck�t� for some given Ck�t�. Hence, the
problem is now decoupled in the echelons and is equivalent
to solving a capacitated single-station inventory problem
with or without fixed cost at each echelon, subject to the
nominal demand at the sink node and with the original cost
parameters. This proves (a) for series systems.
In the general network case, because the coupling con-

straints (31) bound the total order made at an installation by
its customers, it cannot be directly interpreted as a capac-
ity on the orders made by each customer. We analyze the
nominal problem by duplicating the coupling constraint and
writing it as

Dki�t�� �Xk�t�−
∑
i∈N�k�

�Xj�t�−
∑

j∈N�k�� j �=i
Dkj�t� ∀k� ∀ t

(33)

for each echelon i supplied by installation k, and setting the
right-hand side of this new constraint to its optimal value,
to obtain a time-varying capacity on the orders made by
each echelon. (a) follows immediately.
For any network, the inventory problem in the case with-

out fixed costs is a linear programming problem. We dual-
ize the coupling constraints (31) through a Lagrangean
multiplier approach. The feasible set of the relaxation is
now separable in the echelons, and the cost function of
the relaxation can be rewritten as the sum of separable
single-installation problems, with new cost parameters that
incorporate the Lagrangean multipliers. It follows from the

theory of Lagrangean relaxation for linear programming
problems that the cost of the relaxation of the problem is
equal to the cost of the original problem. This proves (b).
(c) follows from applying Lemma 3.1 to (b). �

We now give the main theorem regarding the optimal
policy in the robust approach.

Theorem 4.2 (Optimal Robust Policy). (a) The optimal
policy in the robust formulation (32) for echelon k is
the optimal policy obtained for the supply chain sub-
ject to the modified, deterministic demand at sink node s
( for s ∈O�k�):

W ′
s� k�t�= �Ws�t�+

pk−hk
pk+hk

�As�t�−As�t− 1��� (34)

where As�t�= q∗s �t��s�t�+
∑t
5=0 r

∗
s �5� t�, q

∗
s and r∗s being

the optimal q and r variables associated with sink node s
in (32).
(b) The optimal cost in the robust case for the tree net-

work is equal to the optimal cost of the nominal prob-
lem for the modified demands, plus a term representing
the extra cost incurred by the robust policy,

∑N
k=1�2pkhk/

�pk+hk��
∑T−1
t=0

∑
s∈O�k� As�t�.

Proof. We reformulate the problem as a nominal problem
in the same way as in the proof of Theorem 3.2, and invoke
Lemma 4.1. �

The case of more general supply chains is complex
because they cannot be reduced to a tree network: The need
might arise to order from a more expensive supplier when
the cheapest one does not have enough inventory. We can
still define echelons for those networks in a similar man-
ner as before, and the evolution of the stock at echelon k,
which is supplied by the set of installations I�k� and has
the set O�k� as its sink nodes, is described by the following
linear equation:

Xk�t+ 1�=Xk�0�+
t∑
5=0

{ ∑
i∈I�k�

Dik�5�−
∑
j∈O�k�

Wj�5�

}
∀ t�
(35)

With the standard cost assumptions used before, the eche-
lons cannot be studied independently and the optimal policy
is not necessarily base stock, even in the simple case of
demand without uncertainty. This is illustrated in Figure 1.

Figure 1. A network for which the optimal policy is
not base stock.

D3 D1

D2
I1I2

W
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The network in Figure 1 has two installations, and there-
fore two echelons. Echelon 1 can be supplied by instal-
lation 2 at a unit cost c1 = 1, without any fixed ordering
cost, and has the option to order directly from the plant for
the same unit cost c2 = 1, but with an additional fixed cost
K2 = 4 incurred whenever an order is made. This option is
attractive only if installation 2 does not have enough stock
in inventory. The holding and shortage unit costs at eche-
lon 1 are h1 = p1 = 2. The horizon is one time period, and
the demand at time 0 is deterministic, equal to 10 units.
Echelon 1 has only five units in inventory at time 0.
Comparing the two options, it is easy to see that it is

optimal for echelon 1 to order five units from 2 if 2 has five
units in inventory at time 0, two units from 2 and none from
the plant if 2 has two units, and five units from the plant
if 2 has no item in inventory. Therefore, the optimal amount
of stock on hand and on order at echelon 1 at time 0 is 10,
respectively, 7, 10 units if installation 2 has 5, respectively,
2, 0 units in inventory at time 0. Thus, the optimal policy
is not base stock.
Also, while we can reformulate the robust problem as

a new problem with modified demand in the same fash-
ion as before, it loses some of its meaning because distinct
echelons can now “see” the same sink node but different
demands at this node (because of the cost parameters spe-
cific to each echelon, which appear in the expression of
the modified demand). Hence, it is not clear how they can
work together to meet this demand optimally.
However, the proposed robust methodology remains

numerically tractable in a wide range of settings, in par-
ticular with a holding/shortage cost at the installation level
instead of the echelon. This illustrates the applicability of
the proposed approach to different cost structures.

4.2. The Capacitated Model

We now refine our description of the inventory problem in
a supply chain by introducing upper bounds on the amount
of stock that can be ordered and/or held at any time and at
any echelon. As explained in §3.2, an upper bound on the
maximal order can be directly introduced in the proposed
approach, by adding the constraint

Dki�t�� dki ∀k� ∀ i ∈� �k�� ∀ t� (36)

to formulation (32). Inventory capacity, however, requires
further manipulation, because the level of inventory held
at an echelon at any time depends on the demand, which
is subject to uncertainty. Manipulations similar to those in
§3.2 lead to the constraint

�Xk�t+ 1�+
∑
s∈��k�

(
qs�t��s�t�+

t∑
5=0
rs�5� t�

)
�Ck ∀k� ∀ t�

(37)

to be added to the formulation, q�t� and r�5� t� being
defined as in (34).

We next study the structure of the optimal policy.

Theorem 4.3 (Optimal Policy with Link and Echelon
Capacities). The optimal policy is the optimal policy of
the nominal problem with the modified demand defined in
Equation (34), time-varying echelon capacities

C ′
k�t+ 1�=Ck−

2pk
pk+hk

∑
s∈��k�

As�t��

where Ck is the original capacity at echelon k, and link
capacities Dki�t�� dki for all k, i ∈� �k�, and t.

Proof. Follows from incorporating Equations (36) and
(37) into formulation (32). �

5. Numerical Implementation
The purpose of this computational study is to investigate
the performance of the robust approach when the underly-
ing distributions are not perfectly known. In particular, its
aim is to provide some insight into the relative performance
of the robust approach and traditional methods: dynamic
programming in the single-station case and myopic poli-
cies for more complex networks. The topics we seek to
address are
• the robustness of both methods with respect to changes

in probability distributions,
• the effect of various parameters (holding, shortage,

ordering-cost parameters, and time horizon) on the relative
performance of the two methods.
To meet these goals, we consider various values for the

parameters of the system, and study several (assumed and
realized) distributions. Section 5.1 describes how to select
the budgets of uncertainty. Section 5.2 applies the method-
ology to the single-station case, and §5.3 presents results
for series systems and tree supply chains. The conclusions
of these numerical experiments are summarized in §5.4.

5.1. Selection of the Budgets of Uncertainty

We next investigate how to select the budgets of uncer-
tainty �s = ��s�0�� � � � � �s�T −1�� to guarantee performance
while protecting against the uncertainty of the demands
Ws�t�, where s = 1� � � � � S are the sink nodes, with a limited
amount of information on the distributions. We feel that
this partial knowledge of the distributions describes well
the situation in practice. We assume that the random vari-
ables are uncorrelated and that we know the mean �Ws�t�
and the variance 92s �t� of the demand at each sink and
each time period. Let � be the set of random vectors with
admissible distributions, and let CW��� be the cost incurred
in real life by the optimal policy in the robust prob-
lem (32) at � given, when the random demand sequence
takes the value W= �Ws�0�� � � � �Ws�T − 1��s . Bertsimas
and Popescu (2002) describe how to incorporate additional
information on other moments of the distribution. We have,
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for any admissible distribution,

E�CW���

=
T−1∑
t=0

N∑
k=1

∑
i∈N�k�

{
ckiDki�t�+KkiVki�t�+hi �Xi�t+1�+�hi+pi�

·Emax
(
0�

t∑
5=0

∑
s∈O�i�

Ws�5�−
(
Xi�0�+

t∑
5=0
Dki�5�

))}
�

(38)

We will need the following lemma, which was also derived
by Moon and Gallego (1994). An equivalent tight lower
bound for Emin�X�a� is due to Scarf (1958).

Lemma 5.1 (Optimal Upper Bound; See Lo 1987 and
Bertsimas and Popescu 2002). Let X be a nonnegative
random variable with mean ; and variance 92, which we
denote as X ∼ �;�92�+, and let a> 0. We have

max
X∼�;�92�+

E�max�0�X− a�= f �a−;�;�92�� (39)

where f is the convex function defined by

f �x�;�92�=



1
2

[−x+√92+x2] if x�
92−;2
2;

�

−x ;2

;2+92 +;
92

;2+92 if x<
92−;2
2;

�

(40)

Proof. See Bertsimas and Popescu (2002), which also
describes how to incorporate moments of higher order. �

Our goal is therefore to minimize in � :

T−1∑
t=0

N∑
k=1

∑
i∈N�k�

$ckiDki�t�+KkiVki�t�+hi �Xi�t+ 1�

+�hi+pi�f � �Xi�t+ 1��Mi�t+ 1�� Si�t+ 1��% (41)

with Mi�t + 1� = ∑t
5=0
∑
s∈O�i� �Ws�5� and Si�t + 1� =√∑t

5=0
∑
s∈O�i� 92s �5�, where the Dki�t� depend on � as the

optimal solution of the robust problem (32). As before,
Vki�t�= 1 if Dki�t� > 0 and 0 otherwise, and � is subject
to the constraints 0� �s�t�− �s�t− 1�� 1 for all s and t.
Because of the complex dependence of the Dki�t� and�Xi�t� in � , and of the presence of the binary variables

Vki�t�, we will instead consider the following problem:

minimize
T−1∑
t=0

N∑
k=1

∑
i∈N�k�

{
ckiW

′
s� i�t�+hi �Xi�t+1�+�hi+pi�

·f � �Xi�t+1��Mi�t+1��Si�t+1��
}

subject to �Xi�t+1�=
t∑
5=0

∑
s∈O�i�

�W ′
s� i�5�− �Ws�5�� ∀ i�t�

0��s�t�−�s�t−1��1 ∀s�t�

(42)

This assumes that the fixed costs Kki do not play a signifi-
cant role in the function to minimize, and that �Xi�t+1� can
be approximated by

∑t
5=0
∑
s∈O�i��W ′

s� i�5�− �Ws�5��. If the
fixed costs are indeed significant, we could also solve the
problem for prespecified ordering times, for instance, those
of the nominal problem, which would take into account
the fixed costs.

Remark. From Theorem 3.2, Problem (42) yields the exact
optimal � for single-station problems without fixed cost
and with nonpositive initial inventory.

Algorithm 5.2 (Selection of the Budgets of Uncer-
tainty). At time 0, we select � according to the following
procedure:
If the demands are i.i.d., we solve

minimize
N∑
k=1

∑
i∈N�k�

cki
pi−hi
pi+hi

∑
s∈O�i�

�Ws�s�T − 1�

+
T−1∑
t=0

N∑
k=1

∑
i∈N�k�

$hi �Xi�t+ 1�+ �hi+pi�

· f � �Xi�t+ 1��Mi�t+ 1�� Si�t+ 1��%

subject to �Xi�t+ 1�=
pi−hi
pi+hi

∑
s∈O�i�

�Ws�s�t� ∀ i� t�

0� �s�t�− �s�t− 1�� 1 ∀ s� t�

(43)

where the function f has been defined in Lemma 5.1.
If the demands are not i.i.d., we replace �Ws by∑T−1
5=0 �Ws�5�/T in the cost function of problem (43) and by∑t
5=0 �Ws�5�/�t+ 1� in the definition of Xi�t+ 1� for all t

and s ∈O�i�.
In the case with i.i.d. demand, we have used that if

there is no fixed cost, Si�t� =
∑
s∈O�i� �Ws�t� + �pi − hi�/

�pi+hi� ·
∑
s∈O�i� �Ws�t��s�t�, which is a direct extension of

Theorem 3.2.

Remark. The approximations are only used to find the
optimal budgets of uncertainty � . The robust problem (32)
itself does not rely on approximations; therefore, the opti-
mal orders Dki�t� obtained by solving (32) take into
account fixed costs and non-i.i.d. demand, when applicable.

5.2. Example of a Single Station

We now apply the proposed methodology to the example
of minimizing the cost at a single station. The horizon
is T = 20 time periods; the station has zero initial inven-
tory, with an ordering cost per unit c = 1, a holding cost
h= 4, and a shortage cost p = 6, in appropriate measure-
ment units. There is no fixed ordering cost. The stochastic
demand is i.i.d., with mean w= 100 and standard deviation
9 = 20 (unless specified otherwise). In the robust frame-
work, we take �w= 2 ·9 , that is, the demand belongs to the
interval �w− 2 ·9� w+ 2 ·9.
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In the first set of experiments, the stochastic policy is
computed using a binomial distribution. In the second set
of experiments, the stochastic policy is computed using an
approximation of the Gaussian distribution on five points
�w−29� w−9� w� w+9� w+29�. In both cases, the real-
ized distribution is gamma, lognormal or Gaussian, with
the same mean w and standard deviation 9 . These choices
of assumed and realized distributions are motivated by the
fact that we want to study the sensitivity of the performance
of the robust approach relative to dynamic programming
for several combinations of assumed and realized distribu-
tions. Note that we implement dynamic programming with
the assumed distribution, but estimate its performance (as
well as the performance of the robust approach) using the
realized distribution.
The key metric we consider is the relative performance

of the robust policy compared to the stochastic policy
obtained by dynamic programming, as measured by the
ratio R = 100 · �E�DP� − E�ROB��/E�DP�, in percent.
The expectations are computed with respect to the realized
probability distribution, on a sample of size 1,000. In par-
ticular, when R > 0 the robust policy leads to lower costs
on average than with the stochastic policy. We are also
interested in the sample probability distribution of the costs
DP and ROB.
The numerical experiments aim to provide some insight

into the relationship between the performance of the robust
policy and
• the assumed and realized distributions,
• the standard deviation of the demand,
• the cost parameters c, h, and p.
Budgets of Uncertainty. The budgets of uncertainty �k

are computed from Algorithm 5.2. For c= 0, we have

�k =min
(
9

�w
√
k+ 1
1−,2 � k+ 1

)
� (44)

Figure 2. Budgets of uncertainty for c= 0 (left) and c= 1 (right), as p varies with h= 4.
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with , = �p− h�/�p+ h�. Therefore, the budgets �k will
be equal to their worst-case value k+ 1 for k� k̄ with

k̄= 1
1−,2

(
9

�w
)2

− 1 and to
9

�w
√
k+ 1
1−,2

otherwise (assuming T � k̄+1). Note that if the time hori-
zon is smaller than k̄+ 1, then the robust approach is the
same as the worst-case approach. However, this happens
for extreme values of the parameters. For example, when
,2 = 0�9 �p/h = 37�97� and �w = 29 , then k̄ + 1 = 3. In
other words, even in the extreme case that the shortage cost
is close to 40 times the holding cost, the robust approach
will differ from the worst-case approach if the time horizon
is more than three periods.
Figure 2 (respectively, Figure 3) shows �k as a function

of k for p varying and h= 4 (respectively, h varying and
p = 4), with c = 0 on the left panel and c = 1 on the
right panel. The general trend is that �k evolves as

√
k+ 1,

although there are differences for the last few time periods.
In Figures 4–10 we report the performance of the robust

and dynamic programming policies when the assumed dis-
tribution is binomial (respectively, Gaussian) on the left
(respectively, right) panel of each figure.

Impact of the Standard Deviation. Figure 4 shows
how the ratio R = 100 · �E�DP� − E�ROB��/E�DP�, in
percent, evolves as the ratio 9/w increases (i.e., as the
standard deviation increases because we keep w constant).
When the assumed distribution is binomial, the ratio R
increases as the standard deviation increases and the robust
policy outperforms dynamic programming by up to 10%
to 13%, depending on the realized distribution. When the
assumed distribution is Gaussian, the two methods are
equivalent because the robust policy outperforms dynamic
programming by at most 0.4%. In both cases, R shows the
same qualitative trend as 9 increases for the three realized
distributions implemented here, although spreads in numer-
ical values increase as 9 increases.



Bertsimas and Thiele: A Robust Optimization Approach to Inventory Theory
162 Operations Research 54(1), pp. 150–168, © 2006 INFORMS

Figure 3. Budgets of uncertainty for c= 0 (left) and c= 1 (right), as h varies with p= 4.
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A Probabilistic View of Performance. Figure 5 shows
the sample probability distribution of the costs ROB
and DP . Note that when a binomial distribution is assumed
(the graph on the left), ROB yields significantly lower cost
than DP , when the realized distribution is different. In con-
trast, when a Gaussian distribution is assumed (the graph
on the right), the two approaches lead to very close costs.

Impact of the Cost Parameters. In Figures 6–10, we
study the impact on performance of the cost parameters
c, h, and p for 9 = 20. We change one parameter (c, h,
or p) and show the results in terms of the performance
ratio R= 100 · �E�DP�−E�ROB��/E�DP� (Figures 6–8)
and of the fill rates obtained by the robust approach and
by dynamic programming (Figures 9 and 10). As the fill
rates are almost identical for the three realized distributions,
for clarity we only show the graphs obtained when the dis-
tribution is gamma. The numerical evidence suggests that:
• The key insight is that if h < h0 (h0 ≈ 2�5, when

p= 6), then DP outperforms ROB, while if h > h0, ROB

Figure 4. Impact of the standard deviation on performance.
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outperforms DP . This remains valid independently of the
assumed and realized distributions.
• Whether DP or ROB performs better is by and large

not influenced by the ordering cost c. In Figure 6, ROB
outperforms DP (because h > h0), but the degree of out-
performance decreases as c increases.
• If h < h1, then the fill rate based on DP is larger

than the fill rate based on ROB. The exact value of h1
depends on the assumed distribution. If h> h1, then the fill
rate based on DP is by and large smaller than the fill rate
based on ROB. For example, when a binomial distribution
is assumed, h1 = p = 6, and when h > h1, the fill rate of
DP drops below 0�8, compared to 0�92 for ROB.

5.3. Examples of Networks

5.3.1. A Series System. In this section, we apply the
proposed approach to the series system in Figure 11 over
T = 10 time periods. Each order made at echelon 1 or 2
incurs a fixed cost K1 =K2 = 10 and a cost per unit ordered
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Figure 5. Sample probability distributions.
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Figure 6. Impact of the ordering cost on performance.
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Figure 7. Impact of the holding cost on performance.
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Figure 8. Impact of the shortage cost on performance.
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Figure 9. Impact of the holding cost on the fill rates.
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Figure 10. Impact of the shortage cost on the fill rates.
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Figure 11. A series system.

D2(t ) D1(t ) W (t )I2 I1

c1 = c2 = 1. The holding and shortage costs at echelon 1 are
h1 = 4, p1 = 12, while holding and shortage are penalized
equally at echelon 2� h2 = p2 = 4. The stochastic demand is
i.i.d. with mean �W = 100 and 9 = 20. In the robust model,
we take �W = 2 · 9 . Echelons 1 and 2 hold zero inventory
at time 0.
Here we are interested in comparing the performance of

the robust policy and the myopic policy obtained for the
same two assumed distributions, as in §5.2 (binomial and
approximate Gaussian on five points). The realized distri-
butions remain gamma, lognormal, or Gaussian with the
same first two moments.
The budgets of uncertainty at time 0 for all remain-

ing time periods are computed using Algorithm 5.2. We
reoptimize the problem at each time period for both the
robust and the myopic approach. For the robust approach,
we update the budgets of uncertainty at time t, t =
1� � � � � T − 1, as follows:
��t��5�= ��t−1��5 + 1�− ��t−1��1� (45)

for 5 = 0� � � � � T − t− 1. (If we reoptimized the budgets of
uncertainty, we would consistently overprotect the first time
period in the horizon.) This updating rule does not change
��t��5�− ��t��5 − 1�, which we use to define the modified
demand, and therefore is consistent with the implementa-
tion of the base-stock levels in §5.2.
The performance is measured by the sample probabil-

ity distributions of the costs MYO and ROB, and the ratio
r = 100 · �MYO − ROB�/MYO, in percent. As before,

Figure 12. Costs of robust and myopic policies.
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the left (respectively, right) panels of the figures show the
results obtained assuming a binomial distribution (respec-
tively, approximate Gaussian).

Costs of the Robust and the Myopic Policies. The
realized distribution of the demand and, more surprisingly,
the distribution assumed to compute the myopic policy, do
not appear to play a significant role in the sample prob-
ability distribution of the costs of the two policies shown
in Figure 12. The robust policy clearly outperforms the
myopic policy because it leads to costs with a lower mean
and variance.

Sample Distribution of Performance Ratio. When
the assumed distribution is binomial, all values of r are pos-
itive and the sample probability distribution of r is mostly
concentrated on the range �20%�45% as shown in Fig-
ure 13. When the assumed distribution is Gaussian, r < 0
has a very low probability, and the sample probability dis-
tribution of r is mostly concentrated on the range [15%,
35%]. Therefore, it appears that having similar assumed
and realized distributions does reduce the relative differ-
ence between the two policies, but the very use of a myopic
policy leads to a significant cost disadvantage. This further
demonstrates the high potential of the robust policy when
applied to supply chains.

5.3.2. A Tree Network. In this section, we apply the
proposed approach to the supply chain in Figure 14 over
T = 5 time periods. Echelons 1 and 2 consist of installa-
tions 1 and 2, respectively. Echelon 3 consists of installa-
tions 1, 2, and 3, and the links in-between. The unit order-
ing costs are c1 = c2 = c3 = 1. There are no fixed costs.
Holding and shortage are penalized equally at echelons 1
and 2: h1 = p1 = 8, h2 = p2 = 8, while the holding and
shortage costs at echelon 3 are h3 = 5, p3 = 7. Demands
at installations 1 and 2 are i.i.d., with the same nominal
demand �W = 100 and the same standard deviation 9 . What
distinguishes echelons 1 and 2 is their initial inventory:
150 items at echelon 1, 50 at echelon 2, and the realized
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Figure 13. Sample distribution of relative performance.
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demand distributions, which are either gamma, lognormal
or Gaussian, with the same mean and standard deviation.
Echelon 3 initially holds 300 items. Expected costs are
computed using a sample size of 1,000.
As in §5.3.1, we are interested in comparing the perfor-

mance of the robust policy and the myopic policy obtained
for the same two assumed distributions as in §5.2 (bino-
mial and approximate Gaussian on five points). Here, we
assume the same distribution at stations 1 and 2 when com-
puting the myopic policy. The realized distributions remain
gamma, lognormal, or Gaussian with the same first two
moments, and can differ between stations. In the robust
framework, �W = 2 · 9 and the budgets of uncertainty are
computed at time 0 for all remaining time periods using
Algorithm 5.2. We reoptimize the problem at each time
period for both the robust and the myopic approach, and
update the budgets of uncertainty as in §5.3.1.
The performance is measured by the sample probabil-

ity distributions of the costs MYO and ROB, and the ratio
r = 100 · �MYO − ROB�/MYO, in percent. As before,
the left (respectively, right) panels of the figures show the
results obtained assuming a binomial distribution (respec-
tively, approximate Gaussian).

Figure 14. A supply chain.

D3(t )

D1(t ) W1(t )

W2(t )

D2(t )

I3

I1

I2

Sample Distribution of Performance Ratio. As
shown in Figure 15, the robust policy performs significantly
better than the myopic policy, independently of the realized
probability distributions, although there is a small positive
probability that the myopic policy will perform better. This
last point is not surprising given the short time horizon we
are considering.

Costs of the Robust and the Myopic Policies. For
clarity, and because the realized distribution does not seem
to play a major role, in Figure 16 we only show the costs
for gamma distributions at both sink nodes. The robust pol-
icy has lower mean and variance than the myopic policy
when the assumed distribution is binomial or Gaussian.

Impact of the Horizon. We study here the impact of
the time horizon T on the relative performance of the
robust and myopic policies as measured by the ratio r for
gamma demand distributions at both stations 1 and 2. The
results presented in Figure 17 confirm the intuition that
the robust policy tends to perform better as the horizon T
increases. Although the peak of the relative performance r
stays around 20% for a sample probability of about 0.3,
the spread of the sample distribution seems to be reduced
as T increases, thus making it more and more likely that
the robust policy will outperform the myopic policy as the
horizon increases.

5.4. Summary of Results

The numerical evidence we have presented in §5 suggests
that:
• The robust approach leads to high-quality solutions

and often outperforms dynamic programming-based poli-
cies in single stations and myopic policies in more complex
supply chains.
• For single stations, the robust approach outperforms

dynamic programming, when the holding cost is above a
certain threshold (relative to the shortage cost) and is out-
performed by dynamic programming otherwise. This con-
clusion remains valid for a wide variety of assumed and
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Figure 15. Relative performance.
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Figure 16. Sample probability distributions of costs.
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Figure 17. Impact of the horizon.
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realized distributions as well as other parameters (like the
ordering cost).
• For more complex supply chains, the robust policy

performs significantly better than a myopic policy, in par-
ticular over many time periods, even when assumed and
realized demand distributions are close.

6. Conclusions
In this paper, we have proposed a deterministic, numeri-
cally tractable methodology to address the problem of opti-
mally controlling supply chains subject to random demand.
Using robust optimization ideas, we have built an equiv-
alent model without uncertainty of the same class as
the nominal problem, with a modified demand sequence.
Specifically, the proposed model is a linear programming
problem if there are no fixed costs throughout the supply
chain, and a mixed-integer programming problem if fixed
costs are present.
This model incorporates a wide variety of phenomena,

including demands that are not identically distributed over
time and capacity on the echelons and links. When the
parameters are chosen appropriately, the proposed approach
preserves performance while protecting against uncertainty.
One of its most appealing features is that it uses very lit-
tle information on the demand distributions, and therefore
is widely applicable. In particular, if we only know the
mean and the variance of the distributions, the robust policy
often outperforms the nominal policy, as well as policies
computed assuming full but erroneous knowledge of the
distributions for the correct mean and variance.
This approach also provides valuable theoretical insights.

We have derived the expression of key parameters of the
robust policy, and shown optimality of base-stock policies
in the proposed framework when the optimal stochastic
policy is base stock, but also in other instances where the
optimal stochastic policy is not known. Hence, the method-
ology is not only validated on benchmark problems where
the optimal stochastic policy is already known (yet in gen-
eral hard to compute numerically), but also provides a
framework to analyze complex supply chains for which
the traditional tools of stochastic optimization face serious
dimensionality problems.
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